Biomechanical basis of wing and haltere coordination in flies.

نویسندگان

  • Tanvi Deora
  • Amit Kumar Singh
  • Sanjay P Sane
چکیده

The spectacular success and diversification of insects rests critically on two major evolutionary adaptations. First, the evolution of flight, which enhanced the ability of insects to colonize novel ecological habitats, evade predators, or hunt prey; and second, the miniaturization of their body size, which profoundly influenced all aspects of their biology from development to behavior. However, miniaturization imposes steep demands on the flight system because smaller insects must flap their wings at higher frequencies to generate sufficient aerodynamic forces to stay aloft; it also poses challenges to the sensorimotor system because precise control of wing kinematics and body trajectories requires fast sensory feedback. These tradeoffs are best studied in Dipteran flies in which rapid mechanosensory feedback to wing motor system is provided by halteres, reduced hind wings that evolved into gyroscopic sensors. Halteres oscillate at the same frequency as and precisely antiphase to the wings; they detect body rotations during flight, thus providing feedback that is essential for controlling wing motion during aerial maneuvers. Although tight phase synchrony between halteres and wings is essential for providing proper timing cues, the mechanisms underlying this coordination are not well understood. Here, we identify specific mechanical linkages within the thorax that passively mediate both wing-wing and wing-haltere phase synchronization. We demonstrate that the wing hinge must possess a clutch system that enables flies to independently engage or disengage each wing from the mechanically linked thorax. In concert with a previously described gearbox located within the wing hinge, the clutch system enables independent control of each wing. These biomechanical features are essential for flight control in flies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proprioceptive feedback determines visuomotor gain in Drosophila

Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neur...

متن کامل

Haltere mechanosensory influence on tethered flight behavior in Drosophila.

In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual syst...

متن کامل

Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly, Calliphora.

The first basalar muscle (B1) is 1 of 17 small steering muscles in flies that control changes in wing stroke kinematics during flight. The B1 is often tonically active, firing a single phase-locked action potential in each and every wingbeat cycle. Changes in activation phase alter the biomechanical properties of B1, which in turn cause aerodynamically relevant changes in wing motion. The phase...

متن کامل

Analysis of vestigial" (yg): a mutation causing homoeosis of haltere to wing and posterior wing duplications in Drosophila melanogaster

vg is a homozygous lethal mutation killing embryos prior to formation of the syncitial blastoderm. In heterozygous condition it causes duplications of the posterior wing, ranging from very small duplications of the axillary cord and alar lobe to large duplications including much of the wing blade and the posterior row of bristles. No anterior margin structures are ever observed. The thorax is s...

متن کامل

A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster.

The flight trajectories of fruit flies consist of straight flight segments interspersed with rapid turns called body saccades. Although the saccades are stereotyped, it is not known whether their brief time course is due to a feed-forward (predetermined) motor program or due to feedback from sensory systems that are reflexively activated by the rapid rotation. Two sensory modalities, the visual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 5  شماره 

صفحات  -

تاریخ انتشار 2015